МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОПТИМАЛЬНОГО РЕШЕНИЯ, ИСПОЛЬЗУЯ ФИНАНСОВУЮ ФУНКЦИЮ «БС» MS EXCEL

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОПТИМАЛЬНОГО РЕШЕНИЯ, ИСПОЛЬЗУЯ ФИНАНСОВУЮ ФУНКЦИЮ «БС» MS EXCEL

Авторы публикации

Рубрика

IT-Технологии

Просмотры

133

Журнал

Журнал «Научный лидер» выпуск # 37 (82), Сентябрь ‘22

Поделиться

В работе представлено математическое моделирование оптимального решения финансовой задачи, используя встроенную функцию «БС» MS Excel.

Математическое моделирование финансовых операций, опирающееся на множество методов и алгоритмов, используется очень широко в жизнедеятельности общества. Оно осуществляется с целью формирования определенных представлений о характере финансовых явлений и процессов [4, с. 223].

Это предопределяет необходимость овладения инструментами финансового анализа и прогнозирования изучаемых процессов. При этом компьютерные программы для финансовых исследований должны являться повседневным рабочим инструментом специалиста, связанного с обработкой финансовой информации [1, с. 105].

В настоящее время широко используется программное обеспечение, работающее в операционной системе Windows. Одной из составляющих этого обеспечения является программа Microsoft Excel, которая позволяет анализировать информацию, работать со встроенными финансовыми функциями и подбирать оптимальные решения различных финансовых задач [3, с. 77].

Рассмотрим задачу и проведем моделирование оптимального решения, используя финансовую функцию «БС» Microsoft Excel [2, с. 18].

Достаточно ли положить на счет 85.000 руб. для приобретения через 5 лет телевизора стоимостью 160.000 руб., если банк начисляет проценты ежеквартально при годовой ставке 12%.

Рассмотрим решение, используя финансовую функцию «БС» MS Excel [5, с. 130].

Для решения поставленной задачи составим таблицу исходных данных (рисунок 1).

Рисунок - 1 Исходные данные

Введя, необходимые значения для функции «БС», в ячейку В6

=БС(12%/4;5*4;;-85000;1)

получим решение F = 153.519,45 руб.  (рисунок 2).

Рисунок – 2 Фрагмент окна MS Excel для функции «БС»

Проведем дополнительные варианты моделирования финансовой ситуации, а именно, рассмотрим  два варианта:

- первоначально положить на счет большую сумму;

- воспользоваться банком, где предусмотрена большая процентная ставка.

1 вариант.

Для определения необходимой суммы, исходные данные задачи представим в виде таблицы и воспользуемся средством «Подбор параметра» из меню команды Сервис или Данные/Анализ «что-если»/Подбор параметра.

Иллюстрация решения представлена на рисунок 3.

Рисунок - 3 Фрагмент окна MS Excel с заполненными

полями вкладки «Подбор параметра»

После подтверждения введенных данных в ячейке В6 установится значение 160.000,00р., а в ячейке B2 отобразится результат – 88.588,12 руб. (рисунок 4).

Рисунок  - 4 Фрагмент окна MS Excel с заполненными

полями вкладки «Подбор параметра»

Это означает, что изначальная сумма, которая должна быть вложена, равна 88.588,12 рублей.

2 вариант.

В данном случае также можно применить средство Подбор параметра, изменяя ячейку, в которой находится процентная ставка (рисунок 5).

Рисунок - 5 Фрагмент окна MS Excel с заполненными полями вкладки

«Подбор параметра», изменяя ставку процента

Рисунок - 6 Решение задачи, используя вкладку «Подбор параметра»,

изменяя ставку процента

Таким образом, годовая ставка при исходных данных должна составить примерно 12,9%.

Вывод: для достижения необходимой суммы потребитель может выбрать один из двух вариантов, а именно, либо увеличить первоначально вкладываемую сумму, либо определить вклад под большую процентную ставку.

Список литературы

  1. Колесникова С.В., Двойственный метод, как метод оптимизации экономических процесов, реализуемый в среде MS Excel. Новая наука: Проблемы и перспективы.. 2016. № 3-1. С.104-106.
  2. Колесникова С.В., Формирование отчетов, используя MS Excel при решении задач линейного программирования/ В сборнике: Информационные технологии в экономических и технических задачах. Сборник научных трудов Международной научно практической конференции. 2016. С.17-19.
  3. Колесникова С.В., Применение простых и сложных процентов к экономическим задачам. Новая наука: Проблемы и перспективы.. 2016. № 9-1. С.76-78.
  4. Колесникова С.В., Экономические задачи, сводимые к транспортным задачам. В сборнике: Человек, общество и государство в современном мире. Сборник научных трудов международной научно практической конференции: в 2 томах. 2016. С.220-223.
  5. Шишов В.Ф., Колесникова С.В., Киндаева Е.Н., Современные инструменты статистического анализа и прогнозирования при решении прикладных задач. Территория инноваций. 2019. №2(30). С. 130-136.
Справка о публикации и препринт статьи
предоставляется сразу после оплаты
Прием материалов
c по
Осталось 3 дня до окончания
Размещение электронной версии
Загрузка материалов в elibrary
Публикация за 24 часа
Узнать подробнее
Акция
Cкидка 20% на размещение статьи, начиная со второй
Бонусная программа
Узнать подробнее