ВОЗМОЖНОСТИ ВНЕДРЕНИЯ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ В ЖЕЛЕЗНОДОРОЖНОЙ ТРАНСПОРТНОЙ СФЕРЕ

ВОЗМОЖНОСТИ ВНЕДРЕНИЯ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ В ЖЕЛЕЗНОДОРОЖНОЙ ТРАНСПОРТНОЙ СФЕРЕ

Авторы публикации

Рубрика

Транспортные коммуникации

Просмотры

32

Журнал

Журнал «Научный лидер» выпуск # 20 (221), Май ‘25

Поделиться

Исследование по возможностям  создания ГИС железнодорожного транспорта  приводит к выводу об обеспечение эффективной работы  всех  сфер  его деятельности посредством комплексной пространственно-координированной информацией. Приходится к выводу, что современные инструментальные  оболочки  ГИС  позволяют  интегрировать в себя любые базы данных и существующие автоматизированные  системы  инвентаризации,  проектирования  и  управления.

A geographic information system (GIS) is an integrated automated system and complex computer technology based on the latest achievements of science and technology in the field of computer science, space navigation, electronic total station, aerospace and terrestrial stereophotogrammetry, and communications. GIS is necessary for organizing databases and designed to receive, enter, store, update, process, and visualize various types of geographically linked information.  As a result of an operational comprehensive GIS analysis, it is possible to predict and make decisions on a wide range of issues related to mapping, surveys, design, construction and operation of engineering facilities, diagnostics, certification, economics, ecology. 

Analyzing the place of GIS among other automated systems allows us to conclude that complex automated information processing in GIS has no analogues with information processing technologies in other automated systems [1]. Modern geoinformation systems represent a new type of automated integrated systems that include CAD (design), ASIS (information systems), DBMS (database management), ASC (mapping), AFS (photogrammetric systems), ACS (cadastral systems) as data processing methods for many existing or pre-existing systems    and they have unique specifics in the organization and processing of data.

The idea of GIS as an automated management system for a computerized database that existed until recently should be considered outdated, since GIS can include many databases, and the full GIS processing technology is much broader than when working with a specific database.  In addition, any GIS necessarily includes a system of expert assessments, which cannot be implemented at the database level.  Finally, GIS databases have not only spatial, but also temporal characteristics, which is important primarily for geographical data. From the point of view of the functional purpose, GIS can be considered as: a management system designed to ensure decision-making on optimal management of various spatial objects (land, natural resources, urban facilities, transport, ecology, etc.); an automated information system combining technologies and technological processes of well-known information systems such as CAD, ASNI, ACHC. The main purpose of creating GIS for railway transport is to provide all areas of its activity with integrated spatially coordinated information. Powerful GIS tool shells allow you to integrate any database and existing automated inventory, design and management systems. The priority areas of GIS application are: creation of digital models of the main tracks of Russian railways, providing solutions to the problems of automation of train traffic control; information and analytical support of cargo movement using satellite navigation systems; information and analytical support for dispatching tasks; information and analytical support for railway station management systems [2].

The coordinate data in the GIS of the railway must be presented in coordinate systems agreed with the State Cartographic Department.  The digital cards used must also be certified. GIS should contain consistent with the coordinate, attributive information on technical services: tracks and structures, track technical systems, electrification systems, contact network, security services, communications; as well as dynamic models for monitoring the resources of technical systems and devices. Legal support for the functioning of GIS railways should be formed on the basis of existing state and industry regulatory frameworks. The subsystem for collecting and entering information is distributed by type of data. The collection and coordination of coordinate data is concentrated in design and survey and research institutes, where complex GIS tools, necessary tools for preparing and digitizing geodata, tools for developing GIS applications and data integration tools are installed. The undoubted advantages of laser location technologies are the direct formation of digital terrain models within the railway right-of-way in close to real-time mode with decimeter accuracy (for air-based technologies)  and the subdecimeter level (for ground-based technology). Integration of modules: inertial measurements, high-precision satellite GLONASS/Gps measurements based on DPGNSS, video location, laser location, ground-penetrating radar and intelligent GIS for special purposes allows obtaining a formed geoinformation space in a single measuring and computing complex installed on a track measuring car, including coordinate models of the track and digital terrain models.  Updating models based on the results of repeated complex measurements provides the necessary information for monitoring the geometry of railway tracks and other railway transport infrastructure facilities used in automated inventory systems, railway design and maintenance; navigation systems operation, management and provision of integrated railway transport safety [3, 4].

Digital models of routes make it possible to use only a satellite navigation system such as GLONASS, which is very important for ensuring the safety and independence of transport arteries from other systems such as GPS. It is very promising to create reference systems based on automated databases, an automated TSA system for measuring and straightening machines and mechanisms. This will allow monitoring the geometry of the path and bring it to the design outline.

Moreover, high-precision digital track models and an automated system for linking to them will be most effective in all navigation cybernetic systems related to the movement of railway rolling stock. Therefore, the creation of high-precision digital models of the main railway tracks should be considered one of the most promising areas for automation and improving the safety of railway transport.

Список литературы

  1. Матвеев С. И., Коугия В.А., Цветков В.Я.. Геоинформационные системы и технологии на железнодорожном транспорте // Международный журнал экспериментального образования.2015. № 3-3. С. 225-225
  2. Худайбергано С.К., Абдумаликов И.О. Зокиров С.Т..Применение ГИС на железнодорожном транспорте // Academic research in educational sciences 2022. №3-5. С. 139-143
  3. Руденко И. А. ГИС в системе управления транспортом // Современные проблемы и перспективы развития земельно-имущественных отношений // 2023. С. 458-465
  4. Молоков М.М. Применение спутниковых и геоинформационных технологий на железнодорожном транспорте // Научное сообщество XXI века: проблемы и пути их решения.2022. С. 10-15
Справка о публикации и препринт статьи
предоставляется сразу после оплаты
Прием материалов
c по
Осталось 6 дней до окончания
Размещение электронной версии
Загрузка материалов в elibrary
Публикация за 24 часа
Узнать подробнее
Акция
Cкидка 20% на размещение статьи, начиная со второй
Бонусная программа
Узнать подробнее